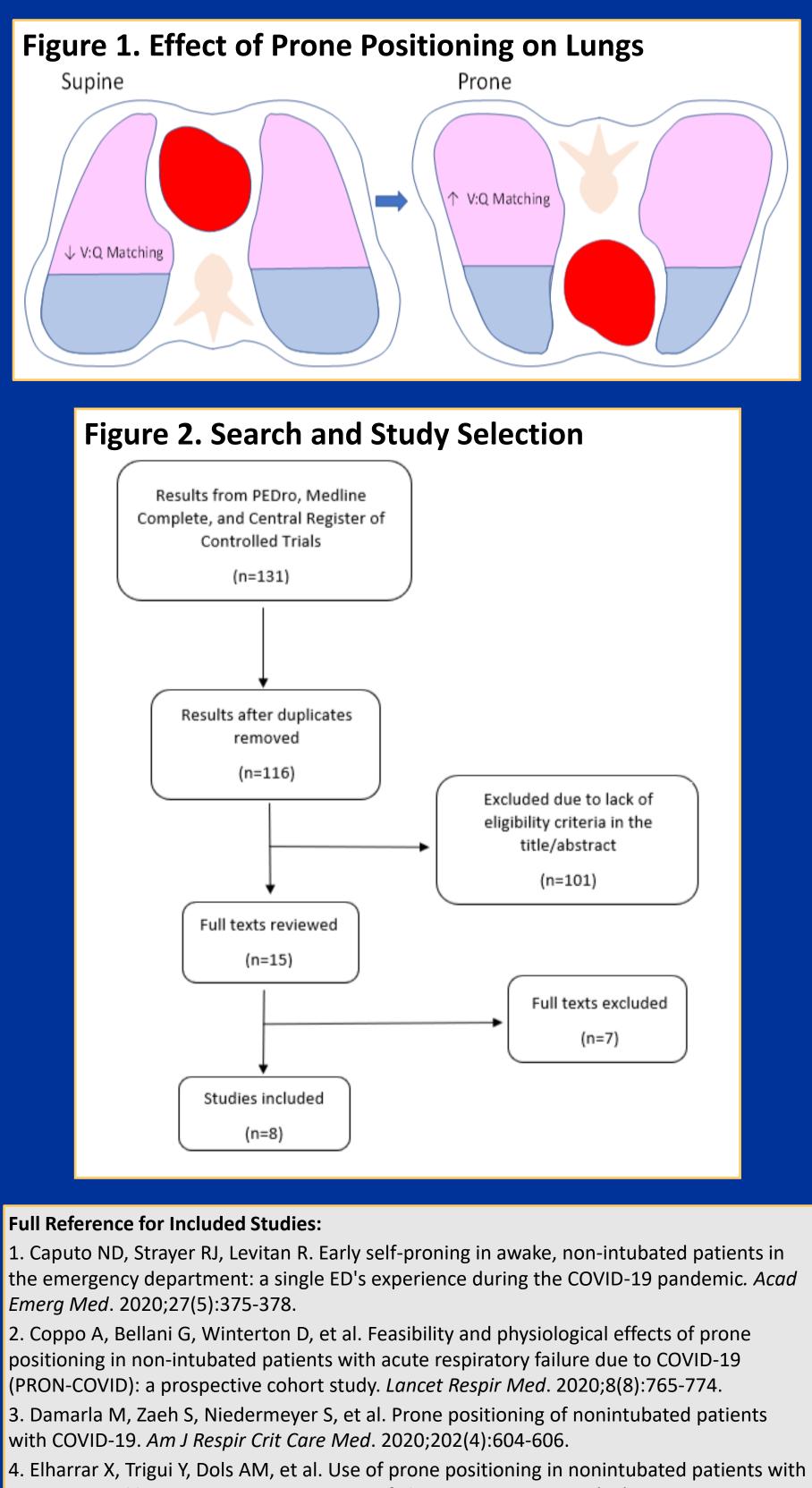
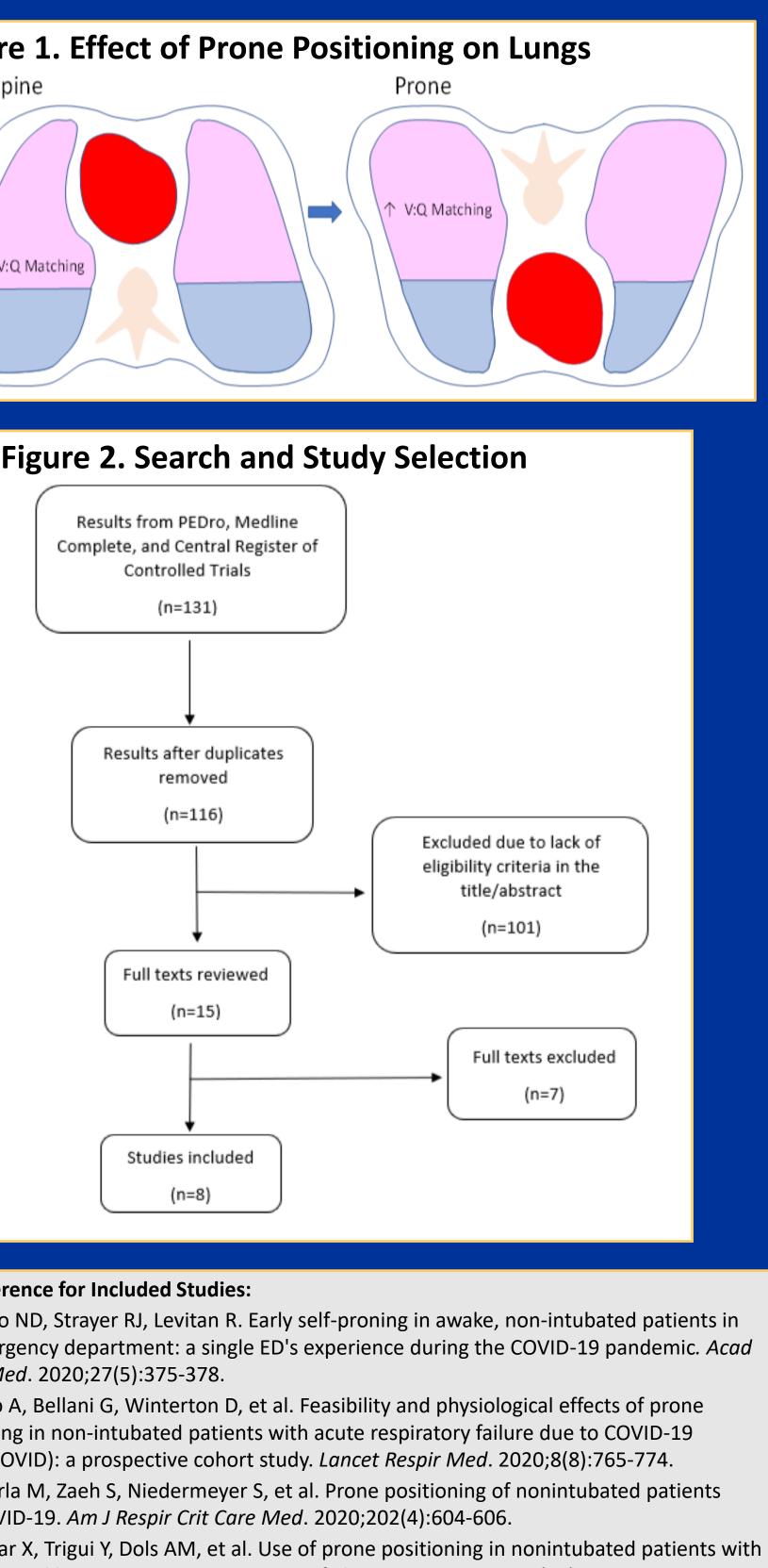
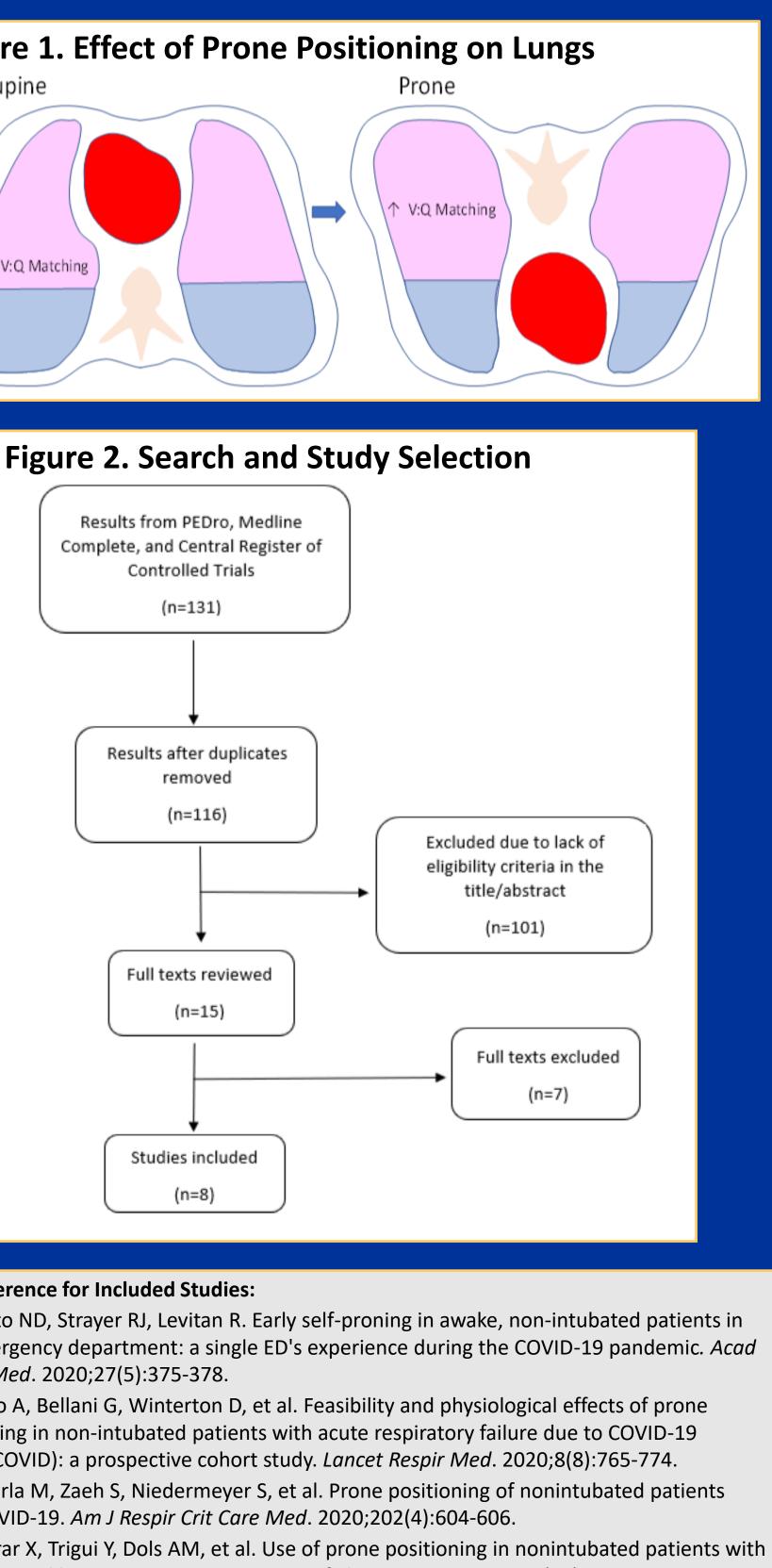


Is Prone Positioning Effective in Improving Hypoxemia for Non-ventilated Patients with COVID-19? **A Rapid Evidence Assessment**


Klair Holmes, SPT; Kathryn Kazmierczak, SPT; Kent Irwin, PT, DHS, GCS; Christian C. Evans, PT, PhD. Midwestern University, Physical Therapy Program, Downers Grove, IL 60515


Background: The COVID-19 pandemic has led to an escalation in hospitalizations and mortality rates due to expanding numbers of patients with Acute Respiratory Distress Syndrome. 29-91% of patients admitted with COVID-19 require mechanical ventilation support. Prone positioning (PP) has the potential to reduce hypoxia and fatality in nonventilated patients with COVID-19 (see Figure 1).


Purpose: To evaluate the effect of PP on SpO₂ for non-ventilated adults with COVID-19 and hypoxemia and to examine other outcomes related to ventilation/hypoxemia.

Methods: The design was a Rapid Evidence Assessment (REA). The PEDro, Medline Complete, and Cochrane Central Register of Controlled Trials databases were searched with the terms: COVID 19 or Covid-19 or Covid19 or SARS COV2 or coronavirus and prone positioning or proning.

Inclusion criteria: included nonventilated adults, diagnosed with COVID-19, and treated with PP. **Exclusion criteria:** patients on mechanical ventilation, <18 y/o, raw data or indicator of central tendency and variability not available. The primary outcome was SpO₂, and secondary outcome measures included PaO₂/FIO₂, PaO₂, PaCO₂, and respiratory rate (RR). The quality of the studies was appraised using the SIGN Methodology Checklist.

Full Reference for Included Studies:

Emerg Med. 2020;27(5):375-378.

positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. *Lancet Respir Med*. 2020;8(8):765-774. 3. Damarla M, Zaeh S, Niedermeyer S, et al. Prone positioning of nonintubated patients with COVID-19. Am J Respir Crit Care Med. 2020;202(4):604-606. 4. Elharrar X, Trigui Y, Dols AM, et al. Use of prone positioning in nonintubated patients with COVID-19 and hypoxemic acute respiratory failure. JAMA. 2020;323(22):2336-2338. 5. Sartini C, Tresoldi M, Scarpellini P, et al. Respiratory parameters in patients with COVID-19 after using noninvasive ventilation in the prone position outside the intensive care unit JAMA. 2020;323(22):2338–2340.

6. Thompson AE, Ranard BL, Wei Y, et al. Prone positioning in awake, nonintubated patients with COVID-19 hypoxemic respiratory failure. JAMA Intern Med. 2020;180(11):1537–1539. Abbreviations: High-Flow Nasal Cannula = HFNC; Non-Intubated Ventilation = NIV; Prone Position = PP; Respiratory Rate = RR; Nasal cannula = NC; Non-rebreather face mask = FM 7. Tu GW, Liao YX, Li QY, et al. Prone positioning in high-flow nasal cannula for COVID-19 Patients = Pts, Sign Methodology Checklist 3: Cohort Studies^{6,7} patients with severe hypoxemia: a pilot study. Ann Transl Med. 2020;8(9):598 8. Xu Q, Wang T, Qin X, et al. Early awake prone position combined with high-flow nasal oxygen therapy in severe COVID-19: a case series. Crit Care. 2020;24(1):250.

Table 1: Study design, subject selection and characteristics											
	Caputo <i>et al,</i> 2020 ¹¹	Coppo <i>et al,</i> 2020 ¹⁰	Damaria <i>et al,</i> 2020 ¹²	Elharrar <i>et al,</i> 2020 ¹³	Sartini <i>et al,</i> 2020 ¹⁴	Thompson <i>et al,</i> 2020 ¹⁵	Tu <i>et al,</i> 2020 ⁹	Xu <i>et al,</i> 2020 ¹⁶			
Primary Design	Cohort Study	Cohort Study	Cohort Study	Cohort Study	Cohort Study	Cohort Study	Cohort Study	Retrospective Study			
Subcategory	Pilot Study						Pilot Study				
Participants	50	56	10	24	15	25	9	10			
Setting	ED	ED, Non-ICU (medical wards and respiratory high- dependency unit)	ICU	Non-ICU	Non-ICU (medical ward)	Non-ICU (intermediate care unit/step down unit)	ICU	Non-ICU			
Hours prone/day, mean or median	≥5 min (data collected at 5 min)	≥3 hrs	Alternate positions every 2 hrs, slept in prone	>1-3 hrs	3 hrs/ 3x day (as tolerated)	≥1 hr (as tolerated)	1-4 hrs	≥16 hrs			
Intervention (include SpO ₂ , high flow O ₂)	Median SpO2 was 80%, self-proning one episode	A single episode of PP lasting for at most 3 hrs	Alternate between prone and supine every 2 hours and sleep in prone	A single episode of PP for as long as tolerated	Two cycles of PP, follow up taken at 14 days	PP for as long as tolerated for 24 hrs	HFNC remained constant before and during proning, one episode of proning	HFNC, used a SpO ₂ >90%, PP for as long as the patient could tolerate up to 16 hrs			
Criteria for Enrollment		18-75 yrs, COVID-19 (+), requiring supplemental oxygen or non-invasive CPAP	(+) PCR testing for SARS-CoV-2 RNA, with increasing oxygen requirements	COVID-19 (+), non- intubated, required supplemental oxygen, chest CT with posterior lesions	Hypoxemic (SpO₂ ≤ 93%)	Covid-19 (+), RR< 30 breaths/min, SpO2<93%, supplemental 02 6L/min NC, 15 L/min FM	Covid-19 (+), HFNC >2 days, PaO ₂ /FiO ₂ <150 mmHg	Awake, COVID-19 (+) P/F <300 mmHg, SpO ₂ greater than 90%			
Exclusion Criteria	Pts requiring NIV	Pregnant patients, uncollaborative, had altered mental state, COPD, New York Heart Association class below II	Pts requiring intubation	Impaired consciousness, and acute respiratory failure requiring intubation	Pts requiring NIV	Unable to prone, pts requiring intubation	None has been given	Pts who are pregnant or are not considered severe			

Table 2: Outcomes, Limitations and Quality Assessment

		,						
Outcomes	SpO ₂ and rate of patients intubated	PaO ₂ /FiO ₂ ratio, safety and feasibility of PP, PaCO ₂ , and dyspnea	SpO ₂ and RR	PaO ₂ , PaCO ₂ , dyspnea, and discomfort (VAS)	PaO ₂ /FiO ₂ ratio, RR, comfort, and SpO ₂	SpO2	SaO₂, PaO₂ and, PaCO₂	PaCO2 and PaO2/FiO2
Key Results	SpO ₂ increased from 84% to 94%, 13 out of 50 patients total received intubation	Increase in PaO ₂ /FiO ₂ by more than 50% from supine to prone, the increase was not significant when returning back to supine	Increase in SpO ₂ from 94% to 98% and decrease RR from 31 to 22 bpm	63% of patients were able to tolerate PP for ≥3 hours, however, there was only an increase in PaO ₂ in 25% of them.	The decrease in RR and comfort, all had improved SpO ₂ and PaO ₂ /FiO ₂ ratio during PP	Increase in SpO ₂ one hour after PP compared to baseline	Increase in SaO ₂ from 90% to 96% and PaO ₂ from 69 to 108 mmHg, a decrease in PaCO ₂ from 47 to 39 mmHg	Median PaCO ₂ increased and the median PaO ₂ /FiO ₂ elevated
Strengths	Supportive for acute setting, PP was the only invention conducted	No adverse events related to procedure occurred, compared non-responders with the responders	8/10 of patients did not require mechanical ventilation, no adverse events with PP	10-day follow-up, measured response in re-supination. None of the participants received major complications	14 day follow up	SpO₂ of ≥ 95% after 1 hr of PP was associated with a lower rate of intubation	No adverse events occurred, 7 out of 9 patients avoided invasive mechanical ventilation	All patients survived, none of the patients progressed to critical condition or needed intubation
Limitations	13 out of 50 pts failed to improve SpO ₂ and required endotracheal intubation, short PP episode	Lack of a control group, single-center, and possible selection bias	Small sample size, selection bias possible, no control group, only one episode of data collection	Small sample size, only a single episode of PP was evaluated, short follow-up, clinical outcomes were not assessed, variable length of intervention	Small sample size, lack of control group, short duration of PP, patients were not included if NIV failed while in PP	No control group, small sample size, the inclusion of both intubated and non-intubated patients	No control group, the small sample size	No control group, the small sample size
SIGN Methodology Checklist ¹	Acceptable	Acceptable	Low Quality	Acceptable	Acceptable	Low Quality	Low Quality	Low Quality

Results:

- inclusion/exclusion criteria (Table 1).
- A total of 199 subjects were included.
- Methodology Checklist (Table 2).

- more successful the treatment.

Clinical Significance:

- support for PP for improving SpO₂ in nonventilated patients with COVID-19.
- remained prone for longer duration.

Limitations:

- All 8 studies had significant limitations.
- standardized PP protocols.

Conclusion: This Rapid Evidence Assessment supports the use of PP with non-ventilated patients with COVID-19, but additional higher-level studies are needed to confirm these results.

Acknowledgements: The authors thank the MWU Library and Colleen Bannon, M.L.I.S. for assistance in this project.

A total of 116 studies were identified and 8 met all

Four studies were of acceptable quality, whereas four studies were of low quality based on the SIGN

Four out of 8 studies found a significant increase in SpO₂ post-PP compared to pre-PP (Table 2).

Two studies observed that RR was reduced with PP and 3 found PP increased PaO₂/FiO₂ (Table 2).

The longer the participants remained in PP the

Due to heterogeneity in methods, lower quality study designs and varied results, there is moderate

Not all non-ventilated patients with hypoxemia due to COVID-19 benefit from PP or tolerate it.

Trend for a more favorable outcome when patients

There were varying degrees of bias due to lack of a well-controlled study design (all cohort studies), small sample size, lack of follow-up, and non-